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1 Disk factor

The expansion coefficients for Farrell’s disk are

Γn =
2n+ 1

4πa2

[

−
1 + cosα

n(n+ 1) sinα

∂Pn(cosα)

∂α

]

(1)

=
2n+ 1

4πa2
Dn (2)

representing a disk of radius α. The quantity in the bracket is the expression running in

the infinite sums. The sum over the D’s is corresponds (is proportional) to the potential

of the disk

∞
∑

n=0

Dn tn Pn(cos θ) =

∫∫

D

sinφ
√
1− 2t cos θ′ + t2

dφ dλ (3)

with θ′ the angle from the field point (at θ from the disk’s centre) to the infinitesimal

volume in the integration.

The derivative of a Legendre polynomial with respect to the angle is conveniently com-

puted from the recurrence relation

∂Pn(cos θ)

∂θ
=

n

sin θ
[cos θ Pn(cos θ)− Pn−1(cos θ)] (4)

Just for curiosity we could as for the potential of this disk at arbitrary distance. After

some algebra,

= 2π
∞
∑

n=0

Pn(cos θ)

∫ α

0

∂

∂φ

1
√

1− 2t cosφ+ t2
∂Pn(cosφ)

∂φ

1 + cosφ

n(n+ 1) sinφ
sinφ dφ

(5)



This is difficult even if t = 1. In essence, if we use a disk factor, then also the Kummer-

sums should be integrated over the disk, else we have a mixed situation of a finite sum

with a disk factor and an infinite one for a point load. It could be solved in cylindrical

coordinates, 2a sin θ/2 ≃ r.

The Kummer-transformed Greens function sum with the disk factor included is

u(θ) ≃
Gm

g a

{[

N
∑

n=0

(hn − h∞)Dnt
nPn(cos θ)

]

+ h∞

[

∞
∑

n=0

Dnt
nPn(cos θ)

]}

(6)

This relation might be useful for computing the Newtonian potential of the disk at a

height.

Considering loading effects, we should not combine t < 1 with the disk factor.

The disk factor is primarily useful for the ocean tide-generating potential.

However we will present the Kummer transform terms (the analytic expressions) for

the case t < 1.

2 Summing up Love for the Greens

Just for completeness, here’s the recursion formula

Pn+1(x) =
2n+ 1

n+ 1
x Pn(x)−

n

n+ 1
Pn−1(x) (7)

so if you are heading for Clenshaw summation,

αk = x
2n+ 1

n+ 1
βk = −

n

n+ 1
(8)

you do the following recursion:

yn+2 = yn+1 = 0 (9)

yk = αkyk+1 + βk+1yk+2 + ck for k = n..1 step − 1 (10)

S = y1P1(x) + (β1y2 + c0)P0(k) = y1 cos θ + c0 −
1

2
y2 (11)

In the case of the derivatives

∂Pn+1(cos θ)

∂θ
=

2n+ 1

n
cos θ

∂Pn(cos θ)

∂θ
−

n+ 1

n

∂Pn−1(cos θ)

∂θ
(12)

Remember that in some sums the Love numbers are zero at n = 0 and/or n = 1 so that

you must stop the iteration one step ahead. You need P2(x) and P3(x)

P2(x) =
1

2
(3x2 − 1) P3(x) =

1

2
(5x3 − 3x) (13)

∂P2(cos θ)

∂θ
= −3 sin θ cos θ

∂P3(cos θ)

∂θ
=

3

2
(1− 5 cos2 θ) sin θ (14)
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3 Kummer-transformed sums

We denote the ocean tide-effective potential with OTEP, and a potential-like entity for

horizontal displacement with HDP (a.k.a. PTANG).

The following cases are given, owing to the asymptotic behaviour as n → ∞:

hn → h∞, n kn → k∞, n ln → l∞ (15)

For vertical displacement, gravity, and OTEP,

K1(t) :=
∞
∑

n=0

tnPn(cos θ) =
1

√
1− 2t cos θ + t2

(16)

and in the limit t → 1

1
√
1− 2t cos θ + t2

→
1

2 sin θ/2
(17)

The angular derivative of the above is needed for tilt and strain

K1,θ(t) :=
∂

∂θ

1
√
1− 2t cos θ + t2

= −
t sin θ

(1− 2t cos θ + t2)3/2
(18)

and in the limit t → 1

= −
sin θ

8 sin3 θ/2
= −

cot θ/2

4 sin θ/2
(19)

For gravity

k∞

∞
∑

n=1

n+ 1

n
tnPn(cos θ) = k∞

[

1
√
1− 2t cos θ + t2

− 1 +

∞
∑

n=1

tn

n
Pn(cos θ)

]

= k∞ [K1(t)− 1 +K2(t)] (20)

since k0 = 0. K2(t) will evaluated in equation (27).

For OTEP and HDP, K2(t) applies again,

{

k∞
l∞

} ∞
∑

n=1

tn

n
Pn(cos θ) (21)

see equation (27).

For tangential displacement we denote

S2,θ(l) :=

∞
∑

n=1

lnt
n ∂Pn(cos θ)

∂θ
(22)

and since nln → l∞, we need the infinite sum

K2,θ(t) :=
∂

∂θ

∞
∑

n=1

tn

n
Pn(cos θ) (23)
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3.1 The 1-over-n sum

∞
∑

n=1

tn

n
Pn =

∞
∑

n=1

[
∫ t

0

τn−1 dτ

]

Pn (24)

=

∫ t

0

1

τ

∞
∑

n=1

τnPn dτ (25)

=

∫ t

0

1

τ

[

1
√
1− 2τ cos θ + τ2

− 1

]

dτ (26)

= K2,θ(t) := log 2− log
[

1− t cos(θ) +
√

1− 2t cos θ + t2
]

(27)

The limit for t → 1 is

− log
[

sin2 θ/2 + sin θ/2
]

(28)

The derivative of (27) with respect to θ is

K2,θ(t) :=
∂

∂θ

∞
∑

n=1

tn

n
Pn(cos θ) =

= −
t sin θ

1− t cos θ +
√
1− 2t cos θ + t2

[

1 +
1

√
1− 2t cos θ + t2

]

(29)

In the limit t → 1

= −
1

2
cot θ/2

1 + 2 sin θ/2

1 + sin θ/2
(30)
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3.2 Strain

Common to the strain components is the sum

Sdd(l) :=

∞
∑

n=1

n(n+ 1)lnt
nPn(cos θ) (31)

It occurs in

ǫrr = −
ν

1− ν
ǫa (32)

where ǫa is areal strain, and in ǫθθ (in our notation NN-STRAIN)

Sθθ(h, l) =
∞
∑

n=0

hnt
nPn(cos θ) +

∞
∑

n=1

lnt
n ∂

2Pn(cos θ)

∂θ2
=

= S1(h)− cot θ
∞
∑

n=1

lnt
n ∂Pn(cos θ)

∂θ
−

∞
∑

n=1

n(n+ 1)lnt
nPn(cos θ) (33)

by means of Legendre’s differential equation. The n(n+ 1)-term suggests to evaluate

the finite sums together

sn = −(nln − l∞) tn
[

cot θ

n

∂Pn(cos θ)

∂θ
+ (n+ 1)Pn(cos θ)

]

(34)

Let’s call the sum

S4,θ(l) :=
∞
∑

n=1

sn (35)

After Kummer transformation, the sums that must be evaluated are

K4,θ(t) = − cot θ

∞
∑

n=1

tn

n

∂Pn(cos θ)

∂θ
−

∞
∑

n=1

(n+ 1) tnPn(cos θ) (36)

= cot θ K2,θ(t)−K3(t)

The first term has already been treated. The second term is

K3(t) =
∞
∑

n=1

∂tn+1

∂t
Pn(cos θ) (37)

=
∂

∂t

(

t
√
1− 2t cos θ + t2

− t

)

(38)

=
1− t cos θ

(1− 2t cos θ + t2)3/2
− 1 (39)

and for t → 1

=
1

4 sin θ/2
− 1 (40)

Combining the analytical terms for (36) and letting t → 1 yields

= (1− cot θ/2) cot θ/2
1 + 2 sin θ/2

4 + 4 sin θ/2
+ 1−

1

4 sin θ/2
(41)
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The complete Kummer expression for Sθθ is

Kθθ = h∞K1 − l∞(cot θ K2,θ + K3) (42)

The last strain component to consider is ǫλλ. See Farrell (1972), equations (50) to (56).

There is also shown that the off-diagonal strain elements are zero.

ǫλλ =
1

a
[u+ cot θ v] (43)

With this relation we can compute ǫa

Sa = S1(h) + cot θ S2,θ(l) + Sθθ (44)

Remember, we expect that the finite sum behaves better with the first derivative in-

cluded. If the sum behaves well without it, the areal strain will be simpler to compute

Sa = 2S1(h) + Sdd(l) (45)

The Kummer expression for areal strain is therefore

Ka = 2h∞K1 + l∞K3 (46)

4 Fine tuning

The little deficit in neglecting the remainder between Love numbers at N and ∞ can

be bridged by assuming

γ′

n = γn − c∞ −
cN

n+ 1
cN = (N + 1)(γN − γ∞) (47)

As n → ∞, and when n = N , γ′

n = 0. The 1/(n+ 1) behaviour is just a guess.

Doing Kummer transformations in the extended set, we obtain second order terms

scaled by cN . Our previous analytical terms are with the infinite Love numbers as

before. But in the finite sums we must also subtract cN/(n + 1). These numbers are

BIG! (for Love numbers h for example, cN = 490).

We need to compute a few new sums

K5 :=

∞
∑

n=0

tn

n+ 1
Pn(cos θ) (48)

K5,θ :=

∞
∑

n=1

tn

n+ 1

∂Pn(cos θ)

∂θ
(49)

K6 :=

∞
∑

n=1

tn

n(n+ 1)
Pn(cos θ) (50)

K6,θ :=
∞
∑

n=1

tn

n(n+ 1)

∂Pn(cos θ)

∂θ
(51)
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The results are given for t = 1. I got them with Mathematica.

K5 = log

[

1 +
1

sin θ/2

]

(52)

K5,θ = −
cot θ/2

2 + 2 sin θ/2
(53)

K6 = 1− 2 log [1 + sin θ/2] (54)

K6,θ = −
cos θ/2

1 + sin θ/2
(55)

If t < 1 the high-degree terms are suppressed, so that the long tail would not matter.

You can check by doing the Kummer transformation with the Love numbers for n =
10, 000 instead of ∞.
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